Deep Learning From Noisy Image Labels With Quality Embedding
نویسندگان
چکیده
منابع مشابه
Deep Learning from Noisy Image Labels with Quality Embedding
There is an emerging trend to leverage noisy image datasets in many visual recognition tasks. However, the label noise among the datasets severely degenerates the performance of deep learning approaches. Recently, one mainstream is to introduce the latent label to handle label noise, which has shown promising improvement in the network designs. Nevertheless, the mismatch between latent labels a...
متن کاملAuxiliary Image Regularization for Deep CNNs with Noisy Labels
Precisely-labeled data sets with sufficient amount of samples are notably important for training deep convolutional neural networks (CNNs). However, many of the available real-world data sets contain erroneously labeled samples and the error in labels of training sample makes it a daunting task to learn a well-performing deep CNN model. In this work, we consider the problem of training a deep C...
متن کاملLearning with Noisy Labels
In this paper, we theoretically study the problem of binary classification in the presence of random classification noise — the learner, instead of seeing the true labels, sees labels that have independently been flipped with some small probability. Moreover, random label noise is class-conditional — the flip probability depends on the class. We provide two approaches to suitably modify any giv...
متن کاملInteractive Learning from Multiple Noisy Labels
Interactive learning is a process in which a machine learning algorithm is provided with meaningful, well-chosen examples as opposed to randomly chosen examples typical in standard supervised learning. In this paper, we propose a new method for interactive learning from multiple noisy labels where we exploit the disagreement among annotators to quantify the easiness (or meaningfulness) of an ex...
متن کاملCost-Sensitive Learning with Noisy Labels
We study binary classification in the presence of class-conditional random noise, where the learner gets to see labels that are flipped independently with some probability, and where the flip probability depends on the class. Our goal is to devise learning algorithms that are efficient and statistically consistent with respect to commonly used utility measures. In particular, we look at a famil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2019
ISSN: 1057-7149,1941-0042
DOI: 10.1109/tip.2018.2877939